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Abstract
We use a standard Monte Carlo algorithm to study the slow dynamics of
a binary Lennard-Jones glass-forming mixture at low temperature. We find
that the Monte Carlo approach is by far the most efficient way to simulate
a stochastic dynamics since the relaxation is about 10 times faster than in
Brownian dynamics and about 30 times faster than in stochastic dynamics.
Moreover, the average dynamical behaviour of the system is in quantitative
agreement with that obtained using Newtonian dynamics, apart from at very
short times where thermal vibrations are suppressed. We show, however, that
dynamic fluctuations quantified by four-point dynamic susceptibilities do retain
a dependence on the microscopic dynamics, as recently predicted theoretically.

1. Introduction

Numerical simulations play a major role among studies of the glass transition since, in contrast
to experiments, the individual motion of a large number of particles can be followed at all
times [1]. With present-day computers, it is possible to follow the dynamics of a simple glass-
forming liquid over more than eight decades of time, and over a temperature window in which
average relaxation timescales increase by more than five decades. However, at the lowest
temperatures studied, the relaxation is still orders of magnitude faster than in experiments
performed close to the glass transition temperature. Nevertheless, it is now possible to
numerically access temperatures which are low enough that many features associated to the
glass transition physics can be observed: strong decoupling phenomena [2–4], clear deviations
from fits to the mode-coupling theory [5] (which are experimentally known to hold only at high
temperatures), and crossovers towards activated dynamics [6, 7].

Computer simulations usually study Newtonian dynamics (ND) by solving a discretized
version of Newton’s equations for a given pair interaction between particles [8]. Here, we
study a glass-forming model in which a binary mixture of small and large particles interacts
via a Lennard-Jones pair potential, a model introduced by Kob and Andersen (KA) [5]. It
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can also be interesting to study different types of microscopic dynamics for the same pair
potential. If the dynamics satisfies detailed balance with respect to the Boltzmann distribution,
all structural quantities remain unchanged, although the dynamics might be very different. In
colloidal glasses, for instance, the particles undergo Brownian motion arising from collisions
with the molecules of the solvent, and a stochastic dynamics is more appropriate. Theoretical
considerations also suggest the study of different dynamics. Gleim et al studied a stochastic
dynamics (SD) to investigate whether the relaxation of the KA binary mixture depended on its
microscopic dynamics, their answer being ‘no’ [9]. In SD, a friction term and a random noise
are added to Newton’s equations, the amplitude of both terms being related by a fluctuation–
dissipation theorem. Szamel and Flenner recently used Brownian dynamics (BD) to study the
same KA mixture [10]. In this description there are no momenta, and the positions evolve
with a Langevin dynamics. They again find that relaxation using BD is very similar to that
resulting from ND. They emphasize that even the deviations from mode-coupling fitting are
similar in BD and ND, and conclude that momenta play no role in avoiding the mode-coupling
singularity, contrary to previous claims [11], but in agreement with more recent ones [12].

Recently, it was also discovered that dynamic heterogeneity, that is, spatio-temporal
fluctuations around the average dynamical behaviour, sensitively depends upon the microscopic
dynamics [6, 7, 13]. In particular, a major role is played by conservation laws for energy and
density. In the case of energy the mechanism can be physically understood as follows. For
a rearrangement to take place in the liquid, the system has to locally cross an energy barrier.
If the dynamics conserves the energy, particles involved in the rearrangement must borrow
energy to the neighbouring particles. This ‘cooperativity’ might be unnecessary if energy can
be locally supplied to the particles by an external heat bath. Conservation laws, therefore, might
introduce dynamic correlations between particles, and dynamic fluctuations can be different
when changing from Newtonian energy conserving dynamics to a stochastic thermostatted
dynamics. This predicted influence of the microscopic dynamics on dynamic fluctuations [6, 7]
was in fact our principal motivation for the present study.

In this article, we propose a third type of stochastic dynamics for the KA mixture and
study in detail the dynamics of the system subjected to a standard Monte Carlo (MC) dynamics.
We find that the MC approach is particularly efficient at relaxing the system since it is about
10 times faster than BD and 30 times faster than SD, while the average dynamics is still in
quantitative agreement with ND. We are therefore in a position to study both the very low-
temperature average dynamics of the model and its dynamic fluctuations in detail, shedding
new light on both aspects.

The paper is organized as follows. In section 2 we give details of the simulation technique
and compare its efficiency to previously studied dynamics. In section 3 we present our
numerical results. Section 4 concludes the paper.

2. An efficient simulation technique

We study a binary Lennard-Jones mixture made of NA = 800 and NB = 200 particles of types
A and B , respectively. Particles interact with the following Lennard-Jones pair potential:

φLJ
αβ(r) = 4εαβ

[(
σαβ

r

)12

−
(

σαβ

r

)6]
, (1)

where α, β ∈ [A, B] and r is the distance between the interacting pair of particles. Interaction
parameters εαβ and σαβ are chosen to prevent crystallization and can be found in [5]. The
length and energy are given in the standard Lennard-Jones units σAA (particle diameter), and
εAA (interaction energy), where the subscript A refers to the majority species. The potential is
truncated and shifted at a distance r = 2.5. Previous work [1, 5] has shown that the dynamics
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Figure 1. Self-intermediate scattering function, equation (2), at T = 0.5 and k = 7.21 for various
values of δmax. Inset: the evolution of the relaxation time with δmax unambiguously defines an
optimal value δmax ≈ 0.15 for our simulations.

becomes slow below T ≈ 1.0, while the fitted mode-coupling temperature for this system is
Tc ≈ 0.435, although deviations from mode-coupling behaviour become noticeable already
below T ≈ 0.47.

We have implemented a standard Monte Carlo dynamics [8] for the pair potential in
equation (1). An elementary move can be described as follows. A particle, i , located at the
position ri , is chosen at random. The energy cost, �Ei , to move particle i from position ri to a
new position ri +δr is evaluated, δr being a random vector comprised in a cube of linear length
δmax centred around the origin. The Metropolis acceptance rate, p = min(1, e−β�Ei ), where
β = 1/T is the inverse temperature, is then used to decide whether the move is accepted. In
the following, one Monte Carlo timestep represents N = NA + NB attempts to make such an
elementary move, and timescales are reported in this unit.

The one degree of freedom that remains to be fixed is δmax, which determines the average
lengthscale of elementary moves. If chosen too small, the energy costs are very small, and
most of the moves are accepted, but the dynamics is very slow because it takes a long time
for particles to explore their cage. On the other hand, too large displacements will on average
be very costly in energy, and acceptance rates can become prohibitively small. We seek a
compromise between these two extremes by monitoring the dynamics at a moderately low
temperature, T = 0.5, for several values of δmax. As the most sensitive indicator of the
relaxational behaviour, we measure the contribution from the majority species A to the self-
intermediate scattering function,

Fs(k, t) =
〈

1

NA

NA∑
j=1

eik·[r j (t)−r j (0)]
〉
. (2)

We spherically average over wavevectors of comparable magnitude, and present results for
|k| = 7.21, which corresponds to the first diffraction peak in the static structure factor of the
liquid. In figure 1, we present our results for δmax values between 0.05 and 0.4. As expected, we
find that the relaxation is slow both at small and large values of δmax, and is most efficient for
intermediate values. Interestingly, we also note that the overall shape of the self-intermediate
scattering function does not sensitively depend on δmax.

We define a typical relaxation time as Fs(k, τα) = e−1 and show its δmax dependence in
the inset of figure 1. A clear minimum is observed at the optimal value of δmax ≈ 0.15. In the
rest of the paper we only present data obtained for this value.
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Figure 2. Left: self-intermediate scattering function, equation (2), for k = 7.21 and temperatures
T = 2.0, 1.0, 0.75, 0.6, 0.5, 0.47, 0.45, 0.435, and 0.43 (from left to right). Right: mean-squared
displacement, equation (3), for the same temperatures in the same order.

As compared to previously studied dynamics, we find that, when expressed in numbers
of integration timesteps, structural relaxation in Monte Carlo simulations is marginally faster
than in Newtonian dynamics, but 30 times faster than in stochastic dynamics [9], and 10 times
faster than in Brownian dynamics [10]. We conclude therefore that the MC approach is by far
the most efficient way to perform stochastic molecular simulations of the present glass-forming
material.

The relative inefficiency of both BD and SD is due to the stochastic nature of their
microscopic equations of motion. It is well known that small integration timesteps are required
for accurate integration of stochastic equations of motion, in particular to maintain the delicate
balance between friction and noise required for the system to converge towards the correct
equilibrium distribution [8]. No such constraint exists for MC dynamics, where elementary
moves can be made arbitrarily large. Equilibrium only requires detailed balance to be fulfilled,
and this is always the case with the Metropolis algorithm described above. With larger
elementary moves, particles can efficiently explore their cage and relaxation is much faster.
This physical interpretation is also supported by the optimal value δmax = 0.15 that we report,
which corresponds to a mean-squared displacement of 0.225, very close to the plateau observed
in the mean-squared displacement shown in figure 2, which can be taken as a rough estimate
of the cage size. Monte Carlo simulations can of course be made even more efficient by
implementing for instance swaps between particles, or using parallel tempering. The dynamical
behaviour, however, is then strongly affected by such non-physical moves and only equilibrium
thermodynamics can be studied. Since we want to conserve a physically realistic dynamics, we
cannot use such improved schemes.

We have performed simulations at temperatures between T = 2.0 and T = 0.43, the
latter being smaller than the fitted mode-coupling temperature. For each temperature we have
simulated ten independent samples to improve the statistics. Initial configurations were taken
as the final configurations obtained from previous work performed with ND [6, 7], so that
production runs could be started immediately. For each sample, production runs lasted at least
15τα (at T = 0.43), and much longer for higher temperatures.

3. Results

3.1. Average dynamics

The self-intermediate scattering function, equation (2), is shown in figure 2 for temperatures
decreasing from T = 2.0 down to T = 0.43. These curves present well-known features. The
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dynamics at high temperature is fast and has an exponential nature. When the temperature
is decreased below T ≈ 1.0, a two-step decay, the slower being strongly non-exponential,
becomes apparent. Upon decreasing the temperature further, the slow process dramatically
slows down by about five decades, while clearly conserving an almost temperature-independent
non-exponential shape, as already reported for ND [5].

Finally, as reported for SD [9], we also find that the first process, the decay towards
a plateau, slows down considerably when decreasing the temperature. This process, called
‘critical decay’ in the language of mode-coupling theory [14], is not observed when using ND,
because it is obscured by the thermal vibrations occurring at high frequencies. Although the
plateau seen in Fs(k, t) is commonly interpreted as ‘vibrations of a particle within a cage’,
the data in figure 2 discard this view. From direct visualization of the particles’ individual
dynamics it is obvious that vibrations take place in just a few MC timesteps, while the decay
towards the plateau can be as long as 104 time units at the lowest temperatures studied here.
This decay is therefore necessarily more complex, and most probably cooperative in nature.
This interpretation is supported by recent theoretical studies where a plateau is observed in
two-time correlators of lattice models where local vibrations are indeed completely absent [15].
A detailed atomistic description of this process has not yet been reported, but would indeed be
very interesting.

Next, we study the mean-squared displacement for the majority specie. It is defined as

�2r(t) = 1

NA

NA∑
i=1

〈|ri (t) − ri(0)|2〉, (3)

and we present its temperature evolution in figure 2, which mirrors the evolution of the
self-intermediate scattering function in the same figure. Since we are studying a stochastic
dynamics, displacements are diffusive at both short and long timescales. The plateau observed
in Fs(k, t) now translates into a sub-diffusive regime in the mean-squared displacements
separating the two diffusive regimes. At the lowest temperature studied, when t changes by
three decades from 2 × 102 to 2 × 105, the mean-squared displacement changes by a mere
factor of 2.2, from 0.02 to 0.044. Particles are therefore nearly arrested for several decades of
times, before eventually entering the diffusing regime which allows for the relaxation of the
structure of the liquid.

3.2. Comparison to Newtonian and stochastic dynamics

The previous subsection has shown that the Monte Carlo dynamics of the KA mixture is
qualitatively similar to that reported for ND, apart from at relatively short times where the effect
of thermal vibrations is efficiently suppressed. We now compare our results more quantitatively
with the dynamical behaviour observed using ND.

In figure 3 we compare the time dependence of the self-intermediate scattering function
for three types of dynamics: the present Monte Carlo data, the Newtonian dynamics data taken
from [6], and the stochastic dynamics results from [9], all obtained for the same parameters,
k = 7.21 and T = 0.45. We have rescaled the time to obtain maximum overlap in the long-
time relaxation of the three curves. Quite strikingly, the SD and MC data perfectly overlap over
the complete time range (eight decades of time) of the simulation. Indeed the SD dotted line
is barely visible below the full line of the MC data in figure 3. This confirms our claim that
the MC approach defines a physically relevant microscopic dynamics, since it is completely
equivalent to SD with the major advantage that it is 30 times faster, at least for the KA mixture.

In figure 3, we also confirm that the approach to the plateau is different in MC/SD and
ND. In the latter, phonon-like vibrations affect the initial decay of Fs(k, t). For instance, a
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Figure 3. Left: comparison of the self-intermediate scattering function for k = 7.21, and T = 0.45,
obtained in Monte Carlo (MC) dynamics in this work, Newtonian dynamics (ND) in [6], and
stochastic dynamics (SD) in [9]. Time is rescaled to obtain maximum overlap at large times. MC
and SD agree over the complete time range (indeed the SD dotted line is barely visible below
the full MC line), while MC and ND only agree when Fs(k, t) is close to the plateau and below.
The dip observed at short time in ND is due to thermal vibrations suppressed in both SD and MC.
Right: temperature evolution of the alpha-relaxation time τα(T ) and the inverse of the self-diffusion
constant 1/D(T ) in an Arrhenius plot. Open symbols are for ND, closed symbols for MC (vertically
shifted to obtain maximum overlap with ND data), and the dashed lines are power-law fits to a
divergence at Tc = 0.435, as originally reported in [5].

shallow dip, generally attributed to the ‘Boson peak’, is observed at low temperature in ND;
see the dashed line in figure 3. The long-time decay of the self-intermediate scattering function,
however, is in full quantitative agreement for the three dynamics. This agreement was the main
claim of [9], extended to BD in [10] and for the MC approach in the present work.

Since all dynamics display similar long-time relaxation, it is sensible also to quantitatively
compare the temperature evolution of the relaxation times, τα(T ), already defined above. This
is done in figure 3, where we use a standard representation in which an Arrhenius slowing
down over a constant energy barrier, τα ∼ exp(E/T ), would appear as a straight line. The data
clearly show some upwards bending in figure 3, a super-Arrhenius behaviour typical of fragile
glass-formers. We find that the temperature evolution of the alpha-relaxation time measured
in MC simulations is in complete quantitative agreement with that obtained from ND, over the
complete temperature range T = 2.0 → 0.43. In particular the quality of a power-law fit of
the slowing down, τα ∼ (T − Tc)

−γ , as suggested by mode-coupling theory, is similar for
both dynamics [5, 9]. We have shown such a fit through our data, using the value Tc = 0.435
determined in [5]. The fit describes the data over about 2.5 decades. Deviations from the
mode-coupling fit appear below T ≈ 0.47, and become obvious when T is decreased further.

In figure 3 we also show the temperature evolution of the self-diffusion constant, defined
from the long-time limit of the mean-square displacement as

D = lim
t→∞

�2r(t)

6t
. (4)

The behaviour of the diffusion constant is qualitatively very close to that of the alpha-relaxation
time, and all the above remarks apply. The well-known difference between the two quantities
is a slightly stronger temperature evolution of τα, implying a well-studied decoupling between
translational diffusion and structural relaxation in this system [1, 4], which is therefore very
similar for different types of dynamics.

Theoretically, an identical relaxation within MC/SD/BD/ND is an important prediction
of mode-coupling theory [14] because the theory uniquely predicts the dynamical behaviour
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Figure 4. Four-point susceptibility, equation (5), for the same temperatures as in figure 2, decreasing
from left to right. We have highlighted with open circles the data at T = 0.43, which are fitted
with two power laws shown as dashed lines with exponents 0.35 and 0.75 at short and large times,
respectively.

from static density fluctuations. Gleim et al argue that their finding of a quantitative agreement
between SD and ND is a nice confirmation of this non-trivial mode-coupling prediction [9].
Szamel and Flenner [10] confirmed this claim using BD, and argued further that even deviations
from mode-coupling predictions are identical. We confirm the validity of this statement even
below Tc, showing that the agreement between different dynamics, although indeed predicted
by mode-coupling theory, is certainly valid at a much more general level. Similarly to Szamel
and Flenner, we note that deviations from a power-law divergence cannot be attributed to
coupling to currents which are expressed in terms of particle velocities. In our MC simulations
we have no velocities, so that avoiding the mode-coupling singularity is not due to the
hydrodynamic effects pointed out in [11] (see [12] for more recent theoretical viewpoints).

3.3. Multi-point susceptibility

Having established the ability of MC simulations to efficiently reproduce the average slow
dynamics obtained from ND simulations, we now turn to the study of the dynamic fluctuations
around the average dynamical behaviour, i.e. to dynamic heterogeneity.

Dynamic fluctuations can be studied through the four-point susceptibility, χ4(t), which
quantifies the strength of the spontaneous fluctuations around the average dynamics by their
variance,

χ4(t) = NA[〈 f 2
s (k, t)〉 − F2

s (k, t)], (5)

where fs(k, t) = N−1
A

∑
j cos(k · [r j (t) − r j (0)]) represents the real part of the instantaneous

value of the self-intermediate scattering function, so that Fs(k, t) = 〈 fs(k, t)〉. As shown by
equation (5), it is clear that χ4(t) will be large if run-to-run fluctuations of the self-intermediate
scattering functions are large. This is the case when the local dynamics becomes spatially
correlated, as already discussed in several papers [16–21].

We show the time dependence of the dynamic susceptibility χ4(t) obtained from our MC
simulations for various temperatures in figure 4. As predicted theoretically in [20], we find
that χ4(t) presents a complex time evolution, closely related to the time evolution of the
self-intermediate scattering function. Overall, χ4(t) is small at both small and large times
when dynamic fluctuations are small. There is therefore a clear maximum observed for times
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Figure 5. Four-point susceptibility for various dynamics and ensembles at T = 0.45. As in
figure 3, times have been rescaled to obtain the maximum overlap in the long-time regime. The
three overlapping thin lines represent data for ND-N V E dynamics, SD, and MC, while the thick
line represents ND-N V T data, for which dynamic fluctuations are clearly larger, as predicted
theoretically and discussed in [6].

comparable to τα, where fluctuations are most prominent. The position of the maximum then
shifts to larger times when the temperature is decreased, tracking the alpha-relaxation. The
most important physical information revealed by these curves is the fact that the amplitude of
the peak grows when the temperature decreases. This is direct evidence that spatial correlations
grow when the glass transition is approached.

The two-step decay of the self-intermediate scattering function translates into a two-power-
law regime for χ4(t) approaching its maximum. We have fitted these power laws, χ4(t) ∼ ta ,
followed by χ4(t) ∼ tb, with the exponents a = 0.35 and b = 0.75, in figure 4. We have
intentionally used the notation a and b for these exponents which are predicted, within mode-
coupling theory, to be equal to the standard exponents also describing the time dependence
of intermediate scattering functions [14]. Our findings are in good agreement with previously
reported values for a and b. See [7, 20] for a more extensive discussion and comparison to
other theoretical predictions.

We finally compare the dynamic susceptibility for various dynamics. In figure 5,
we present the time evolution of χ4(t) for a given temperature, T = 0.45 and four
different dynamics: the present MC data, data from SD obtained in [6], data for ND in the
microcanonical (NV E) ensemble from [6], and data for ND in the canonical (NV T ) ensemble
from [6]. To perform this comparison, we have again rescaled times to obtain the maximum
overlap in the long-time region. In figure 5 it is obvious that three curves are identical: ND-
NV E , MC and SD data perfectly overlap near the maximum of χ4(t) and have similar time
dependences, apart from at very short times. On the other hand, the ND-NV T data display a
different time dependence and reveal considerably larger dynamic fluctuations in the long-time
regime.

We conclude therefore that, contrary to the average dynamics, the dynamic fluctuations
quantified through the four-point susceptibility do retain a dependence upon the microscopic
dynamics since canonical estimates of χ4(t) are different for ND and for MC/SD/BD. Although
perhaps counterintuitive at first sight, we find that dynamics with a stochastic heat-bath display
dynamic fluctuations similar to those measured using microcanonical ND, while fluctuations
are much larger in canonical ND simulations. As mentioned in the introduction, this confirms
the idea that the energy conservation (implied by Newton’s equations of motion) might lead to
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an amplification of dynamic fluctuations. With hindsight, this is not such a surprising result: the
specific heat, after all, also behaves differently in different statistical ensembles. The ensemble
dependence and dependence upon the microscopic dynamics are the main subjects of two recent
papers [6, 7].

There is an experimentally relevant consequence of these findings. The difference between
the microcanonical and canonical values of the dynamic fluctuations in ND can be shown to be
equal to [13]

χ N V T
4 (t) − χ N V E

4 (t) = T 2

cV

(
∂ Fs(k, t)

∂T

)2

, (6)

where cV is the constant volume specific heat expressed in kB units. As shown in figure 5,
the temperature derivative in equation (6) represents in fact the major contribution to χ N V T

4 ,
meaning that the term χ N V E

4 can be neglected in equation (6). Since the right-hand side of (6)
is more easily accessible in an experiment than χ4 itself, equation (6) opens the possibility of
an experimental estimate of the four-point susceptibility. This finding, and its experimental
application to supercooled glycerol and hard sphere colloids, constitute the central results
of [13].

4. Conclusion

We have implemented a standard Monte Carlo dynamics on the well-known binary Lennard-
Jones mixture introduced by KA. We have shown that the resulting average dynamics is in
full quantitative agreement with results from Newtonian dynamics, while being considerably
faster than previously studied stochastic dynamics, namely Brownian and stochastic dynamics.
We have therefore at our disposal an efficient numerical technique to simulate the stochastic
dynamics of the KA mixture at low temperature. This allowed us to show, in particular,
that dynamic fluctuations retain a dependence upon the microscopic dynamics since four-point
dynamical susceptibilities evaluated in the canonical ensemble for ND and MC quantitatively
differ, because the energy conservation of Newton’s equations amplify dynamic fluctuations.
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